伯努利不等式计算器

伯努利不等式计算器可用于计算 (1 + x)^n ≥ 1 + nx 的不等式,其中 x ≥ -1 且 n 为自然数。

输入参数

计算结果

计算结果

结果将显示在这里

其中:
(1 + x)^n ≥ 1 + nx
当 x ≥ -1 且 n 为自然数时成立。

伯努利不等式计算器使用指南

了解如何使用伯努利不等式计算器及其工作原理

伯努利不等式简介

伯努利不等式是一个数学不等式,它表明对于所有实数 x ≥ -1 和自然数 n,以下不等式成立:

(1 + x)^n ≥ 1 + nx

如何使用计算器

  1. 输入 x 的值,它应该在 -1 到 1 之间。
  2. 输入 n 的值,它应该是一个自然数。
  3. 点击“计算”按钮,计算器将显示不等式是否成立以及相关计算。

应用场景

伯努利不等式在概率论和统计学中非常有用,特别是在处理二项分布时。